Analysis I, Section 4.1

This file is a translation of Section 4.1 of Analysis I to Lean 4. All numbering refers to the original text.

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

namespace Section_4_1structure PreInt where minuend : subtrahend :

Definition 4.1.1

instance declaration uses 'sorry'PreInt.instSetoid : Setoid PreInt where r a b := a.minuend + b.subtrahend = b.minuend + a.subtrahend iseqv := { refl := ∀ (x : PreInt), x.minuend + x.subtrahend = x.minuend + x.subtrahend All goals completed! 🐙 symm := ∀ {x y : PreInt}, x.minuend + y.subtrahend = y.minuend + x.subtrahendy.minuend + x.subtrahend = x.minuend + y.subtrahend All goals completed! 🐙 trans := ∀ {x y z : PreInt}, x.minuend + y.subtrahend = y.minuend + x.subtrahendy.minuend + z.subtrahend = z.minuend + y.subtrahendx.minuend + z.subtrahend = z.minuend + x.subtrahend -- This proof is written to follow the structure of the original text. a:b:c:d:e:f:h1:{ minuend := a, subtrahend := b }.minuend + { minuend := c, subtrahend := d }.subtrahend = { minuend := c, subtrahend := d }.minuend + { minuend := a, subtrahend := b }.subtrahendh2:{ minuend := c, subtrahend := d }.minuend + { minuend := e, subtrahend := f }.subtrahend = { minuend := e, subtrahend := f }.minuend + { minuend := c, subtrahend := d }.subtrahend{ minuend := a, subtrahend := b }.minuend + { minuend := e, subtrahend := f }.subtrahend = { minuend := e, subtrahend := f }.minuend + { minuend := a, subtrahend := b }.subtrahend a:b:c:d:e:f:h1:a + d = c + bh2:c + f = e + da + f = e + b a:b:c:d:e:f:h1:a + d = c + bh2:c + f = e + dh3:(fun x1 x2 => x1 + x2) (a + d) (c + f) = (fun x1 x2 => x1 + x2) (c + b) (e + d)a + f = e + b a:b:c:d:e:f:h1:a + d = c + bh2:c + f = e + dh3:a + d + (c + f) = c + b + (e + d)a + f = e + b have : (a + f) + (c + d) = (e + b) + (c + d) := calc (a + f) + (c + d) = a + d + (c + f) := a:b:c:d:e:f:h1:a + d = c + bh2:c + f = e + dh3:a + d + (c + f) = c + b + (e + d)a + f + (c + d) = a + d + (c + f) All goals completed! 🐙 _ = c + b + (e + d) := h3 _ = (e + b) + (c + d) := a:b:c:d:e:f:h1:a + d = c + bh2:c + f = e + dh3:a + d + (c + f) = c + b + (e + d)c + b + (e + d) = e + b + (c + d) All goals completed! 🐙 All goals completed! 🐙 }@[simp] theorem PreInt.eq (a b c d:) : ( a,b : PreInt) c,d a + d = c + b := a:b:c:d:{ minuend := a, subtrahend := b }{ minuend := c, subtrahend := d }a + d = c + b All goals completed! 🐙abbrev Int := Quotient PreInt.instSetoidabbrev Int.formalDiff (a b:) : Int := Quotient.mk PreInt.instSetoid a,b infix:100 " —— " => Int.formalDiff

Definition 4.1.1 (Integers)

theorem Int.eq (a b c d:): a —— b = c —— d a + d = c + b := a:b:c:d:a —— b = c —— da + d = c + b a:b:c:d:a —— b = c —— da + d = c + ba:b:c:d:a + d = c + ba —— b = c —— d a:b:c:d:a —— b = c —— da + d = c + b All goals completed! 🐙 a:b:c:d:h:a + d = c + ba —— b = c —— d; All goals completed! 🐙

Definition 4.1.1 (Integers)

theorem Int.eq_diff (n:Int) : a b, n = a —— b := n:Inta b, n = a —— b n:Int∀ (a : PreInt), ∃ a_1 b, Quot.mk (⇑PreInt.instSetoid) a = a_1 —— b; n:Inta:b:a_1 b_1, Quot.mkPreInt.instSetoid { minuend := a, subtrahend := b } = a_1 —— b_1 n:Inta:b:Quot.mkPreInt.instSetoid { minuend := a, subtrahend := b } = a —— b; All goals completed! 🐙

Lemma 4.1.3 (Addition well-defined)

instance Int.instAdd : Add Int where add := Quotient.lift₂ (fun a, b c, d (a+c) —— (b+d) ) (∀ (a₁ b₁ a₂ b₂ : PreInt), a₁a₂b₁b₂ → (fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a + c) —— (b + d)) a₁ b₁ = (fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a + c) —— (b + d)) a₂ b₂ a:b:c:d:a':b':c':d':h1:{ minuend := a, subtrahend := b }{ minuend := a', subtrahend := b' }h2:{ minuend := c, subtrahend := d }{ minuend := c', subtrahend := d' }(fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a + c) —— (b + d)) { minuend := a, subtrahend := b } { minuend := c, subtrahend := d } = (fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a + c) —— (b + d)) { minuend := a', subtrahend := b' } { minuend := c', subtrahend := d' } a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + da + c + (b' + d') = a' + c' + (b + d) calc _ = (a+b') + (c+d') := a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + da + c + (b' + d') = a + b' + (c + d') All goals completed! 🐙 _ = (a'+b) + (c'+d) := a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + da + b' + (c + d') = a' + b + (c' + d) All goals completed! 🐙 _ = _ := a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + da' + b + (c' + d) = a' + c' + (b + d) All goals completed! 🐙)

Definition 4.1.2 (Definition of addition)

theorem Int.add_eq (a b c d:) : a —— b + c —— d = (a+c)——(b+d) := Quotient.lift₂_mk _ _ _ _

Lemma 4.1.3 (Multiplication well-defined)

theorem Int.mul_congr_left (a b a' b' c d : ) (h: a —— b = a' —— b') : (a*c+b*d) —— (a*d+b*c) = (a'*c+b'*d) —— (a'*d+b'*c) := a:b:a':b':c:d:h:a —— b = a' —— b'(a * c + b * d) —— (a * d + b * c) = (a' * c + b' * d) —— (a' * d + b' * c) a:b:a':b':c:d:h:a + b' = a' + ba * c + b * d + (a' * d + b' * c) = a' * c + b' * d + (a * d + b * c) calc _ = c*(a+b') + d*(a'+b) := a:b:a':b':c:d:h:a + b' = a' + ba * c + b * d + (a' * d + b' * c) = c * (a + b') + d * (a' + b) All goals completed! 🐙 _ = c*(a'+b) + d*(a+b') := a:b:a':b':c:d:h:a + b' = a' + bc * (a + b') + d * (a' + b) = c * (a' + b) + d * (a + b') All goals completed! 🐙 _ = _ := a:b:a':b':c:d:h:a + b' = a' + bc * (a' + b) + d * (a + b') = a' * c + b' * d + (a * d + b * c) All goals completed! 🐙

Lemma 4.1.3 (Multiplication well-defined)

theorem Int.mul_congr_right (a b c d c' d' : ) (h: c —— d = c' —— d') : (a*c+b*d) —— (a*d+b*c) = (a*c'+b*d') —— (a*d'+b*c') := a:b:c:d:c':d':h:c —— d = c' —— d'(a * c + b * d) —— (a * d + b * c) = (a * c' + b * d') —— (a * d' + b * c') a:b:c:d:c':d':h:c + d' = c' + da * c + b * d + (a * d' + b * c') = a * c' + b * d' + (a * d + b * c) calc _ = a*(c+d') + b*(c'+d) := a:b:c:d:c':d':h:c + d' = c' + da * c + b * d + (a * d' + b * c') = a * (c + d') + b * (c' + d) All goals completed! 🐙 _ = a*(c'+d) + b*(c+d') := a:b:c:d:c':d':h:c + d' = c' + da * (c + d') + b * (c' + d) = a * (c' + d) + b * (c + d') All goals completed! 🐙 _ = _ := a:b:c:d:c':d':h:c + d' = c' + da * (c' + d) + b * (c + d') = a * c' + b * d' + (a * d + b * c) All goals completed! 🐙

Lemma 4.1.3 (Multiplication well-defined)

theorem Int.mul_congr {a b c d a' b' c' d' : } (h1: a —— b = a' —— b') (h2: c —— d = c' —— d') : (a*c+b*d) —— (a*d+b*c) = (a'*c'+b'*d') —— (a'*d'+b'*c') := a:b:c:d:a':b':c':d':h1:a —— b = a' —— b'h2:c —— d = c' —— d'(a * c + b * d) —— (a * d + b * c) = (a' * c' + b' * d') —— (a' * d' + b' * c') All goals completed! 🐙instance Int.instMul : Mul Int where mul := Quotient.lift₂ (fun a, b c, d (a * c + b * d) —— (a * d + b * c)) (∀ (a₁ b₁ a₂ b₂ : PreInt), a₁a₂b₁b₂ → (fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a * c + b * d) —— (a * d + b * c)) a₁ b₁ = (fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a * c + b * d) —— (a * d + b * c)) a₂ b₂ a:b:c:d:a':b':c':d':h1:{ minuend := a, subtrahend := b }{ minuend := a', subtrahend := b' }h2:{ minuend := c, subtrahend := d }{ minuend := c', subtrahend := d' }(fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a * c + b * d) —— (a * d + b * c)) { minuend := a, subtrahend := b } { minuend := c, subtrahend := d } = (fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a * c + b * d) —— (a * d + b * c)) { minuend := a', subtrahend := b' } { minuend := c', subtrahend := d' } a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + d(fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a * c + b * d) —— (a * d + b * c)) { minuend := a, subtrahend := b } { minuend := c, subtrahend := d } = (fun x x_1 => match x with | { minuend := a, subtrahend := b } => match x_1 with | { minuend := c, subtrahend := d } => (a * c + b * d) —— (a * d + b * c)) { minuend := a', subtrahend := b' } { minuend := c', subtrahend := d' } a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + da —— b = a' —— b'a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + dc —— d = c' —— d' a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + da —— b = a' —— b'a:b:c:d:a':b':c':d':h1:a + b' = a' + bh2:c + d' = c' + dc —— d = c' —— d' All goals completed! 🐙 )

Definition 4.1.2 (Multiplication of integers)

theorem Int.mul_eq (a b c d:) : a —— b * c —— d = (a*c+b*d) —— (a*d+b*c) := Quotient.lift₂_mk _ _ _ _instance Int.instOfNat {n:} : OfNat Int n where ofNat := n —— 0instance Int.instNatCast : NatCast Int where natCast n := n —— 0theorem Int.ofNat_eq (n:) : ofNat(n) = n —— 0 := rfltheorem Int.natCast_eq (n:) : (n:Int) = n —— 0 := rfl@[simp] theorem Int.natCast_ofNat (n:) : ((ofNat(n):): Int) = ofNat(n) := n:↑(OfNat.ofNat n) = OfNat.ofNat n All goals completed! 🐙@[simp] theorem Int.ofNat_inj (n m:) : (ofNat(n) : Int) = (ofNat(m) : Int) ofNat(n) = ofNat(m) := n:m:OfNat.ofNat n = OfNat.ofNat mOfNat.ofNat n = OfNat.ofNat m n:m:n = mOfNat.ofNat n = OfNat.ofNat m All goals completed! 🐙@[simp] theorem Int.natCast_inj (n m:) : (n : Int) = (m : Int) n = m := n:m:n = mn = m All goals completed! 🐙example : 3 = 3 —— 0 := 3 = 3 —— 0 All goals completed! 🐙example : 3 = 4 —— 1 := 3 = 4 —— 1 All goals completed! 🐙

Definition 4.1.4 (Negation of integers) / Exercise 4.1.2

instance declaration uses 'sorry'Int.instNeg : Neg Int where neg := Quotient.lift (fun a, b b —— a) (∀ (a b : PreInt), ab → (fun x => match x with | { minuend := a, subtrahend := b } => b —— a) a = (fun x => match x with | { minuend := a, subtrahend := b } => b —— a) b All goals completed! 🐙)theorem Int.neg_eq (a b:) : -(a —— b) = b —— a := rflexample : -(3 —— 5) = 5 —— 3 := -3 —— 5 = 5 —— 3 All goals completed! 🐙abbrev Int.isPos (x:Int) : Prop := (n:), n > 0 x = nabbrev Int.isNeg (x:Int) : Prop := (n:), n > 0 x = -n

Lemma 4.1.5 (trichotomy of integers )

theorem Int.trichotomous (x:Int) : x = 0 x.isPos x.isNeg := x:Intx = 0x.isPosx.isNeg -- This proof is slightly modified from that in the original text. a:b:a —— b = 0(a —— b).isPos(a —— b).isNeg a:b:this:a < ba = bb < aa —— b = 0(a —— b).isPos(a —— b).isNeg a:b:h_lt:a < ba —— b = 0(a —— b).isPos(a —— b).isNega:b:h_eq:a = ba —— b = 0(a —— b).isPos(a —— b).isNega:b:h_gt:b < aa —— b = 0(a —— b).isPos(a —— b).isNeg a:b:h_lt:a < ba —— b = 0(a —— b).isPos(a —— b).isNeg a:c:h_lt:a < a + c + 1a —— (a + c + 1) = 0(a —— (a + c + 1)).isPos(a —— (a + c + 1)).isNeg a:c:h_lt:a < a + c + 1(a —— (a + c + 1)).isPos(a —— (a + c + 1)).isNeg; a:c:h_lt:a < a + c + 1(a —— (a + c + 1)).isNeg; a:c:h_lt:a < a + c + 1c + 1 > 0a:c:h_lt:a < a + c + 1a —— (a + c + 1) = -(c + 1) a:c:h_lt:a < a + c + 1c + 1 > 0 All goals completed! 🐙 a:c:h_lt:a < a + c + 1a + (c + 1) = 0 + (a + c + 1) All goals completed! 🐙 a:b:h_eq:a = ba —— b = 0(a —— b).isPos(a —— b).isNeg a:b:h_eq:a = ba —— b = 0; All goals completed! 🐙 b:c:h_gt:b < b + c + 1(b + c + 1) —— b = 0((b + c + 1) —— b).isPos((b + c + 1) —— b).isNeg b:c:h_gt:b < b + c + 1((b + c + 1) —— b).isPos((b + c + 1) —— b).isNeg; b:c:h_gt:b < b + c + 1((b + c + 1) —— b).isPos; b:c:h_gt:b < b + c + 1c + 1 > 0b:c:h_gt:b < b + c + 1(b + c + 1) —— b = (c + 1) b:c:h_gt:b < b + c + 1c + 1 > 0 All goals completed! 🐙 b:c:h_gt:b < b + c + 1b + c + 1 + 0 = c + 1 + b All goals completed! 🐙

Lemma 4.1.5 (trichotomy of integers)

theorem Int.not_pos_zero (x:Int) : x = 0 x.isPos False := x:Intx = 0x.isPosFalse n:hn:n > 0hn':0 = nFalse n:hn:n > 0hn':0 = nFalse All goals completed! 🐙

Lemma 4.1.5 (trichotomy of integers)

theorem Int.not_neg_zero (x:Int) : x = 0 x.isNeg False := x:Intx = 0x.isNegFalse n:hn:n > 0hn':0 = -nFalse n:hn:n > 0hn':0 + n = 0 + 0False All goals completed! 🐙

Lemma 4.1.5 (trichotomy of integers)

theorem Int.not_pos_neg (x:Int) : x.isPos x.isNeg False := x:Intx.isPosx.isNegFalse n:hn:n > 0m:hm:m > 0hm':n = -mFalse n:hn:n > 0m:hm:m > 0hm':n + m = 0 + 0False All goals completed! 🐙

Proposition 4.1.6 (laws of algebra) / Exercise 4.1.4

instance declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Int.instAddGroup : AddGroup Int := AddGroup.ofLeftAxioms (∀ (a b c : Int), a + b + c = a + (b + c) All goals completed! 🐙) (∀ (a : Int), 0 + a = a All goals completed! 🐙) (∀ (a : Int), -a + a = 0 All goals completed! 🐙)

Proposition 4.1.6 (laws of algebra) / Exercise 4.1.4

instance declaration uses 'sorry'Int.instAddCommGroup : AddCommGroup Int where add_comm := ∀ (a b : Int), a + b = b + a All goals completed! 🐙

Proposition 4.1.6 (laws of algebra) / Exercise 4.1.4

instance declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Int.instCommMonoid : CommMonoid Int where mul_comm := ∀ (a b : Int), a * b = b * a All goals completed! 🐙 mul_assoc := ∀ (a b c : Int), a * b * c = a * (b * c) -- This proof is written to follow the structure of the original text. x:Inty:Intz:Intx * y * z = x * (y * z) y:Intz:Inta:b:a —— b * y * z = a —— b * (y * z) z:Inta:b:c:d:a —— b * c —— d * z = a —— b * (c —— d * z) a:b:c:d:e:f:a —— b * c —— d * e —— f = a —— b * (c —— d * e —— f) a:b:c:d:e:f:((a * c + b * d) * e + (a * d + b * c) * f) —— ((a * c + b * d) * f + (a * d + b * c) * e) = (a * (c * e + d * f) + b * (c * f + d * e)) —— (a * (c * f + d * e) + b * (c * e + d * f)) a:b:c:d:e:f:(a * c + b * d) * e + (a * d + b * c) * f = a * (c * e + d * f) + b * (c * f + d * e)a:b:c:d:e:f:(a * c + b * d) * f + (a * d + b * c) * e = a * (c * f + d * e) + b * (c * e + d * f) a:b:c:d:e:f:(a * c + b * d) * e + (a * d + b * c) * f = a * (c * e + d * f) + b * (c * f + d * e) All goals completed! 🐙 All goals completed! 🐙 one_mul := ∀ (a : Int), 1 * a = a All goals completed! 🐙 mul_one := ∀ (a : Int), a * 1 = a All goals completed! 🐙

Proposition 4.1.6 (laws of algebra) / Exercise 4.1.4

instance declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Int.instCommRing : CommRing Int where left_distrib := ∀ (a b c : Int), a * (b + c) = a * b + a * c All goals completed! 🐙 right_distrib := ∀ (a b c : Int), (a + b) * c = a * c + b * c All goals completed! 🐙 zero_mul := ∀ (a : Int), 0 * a = 0 All goals completed! 🐙 mul_zero := ∀ (a : Int), a * 0 = 0 All goals completed! 🐙

Definition of subtraction

theorem Int.sub_eq (a b:Int) : a - b = a + (-b) := a:Intb:Inta - b = a + -b All goals completed! 🐙theorem declaration uses 'sorry'Int.sub_eq_formal_sub (a b:) : (a:Int) - (b:Int) = a —— b := a:b:a - b = a —— b All goals completed! 🐙

Proposition 4.1.8 (No zero divisors) / Exercise 4.1.5

theorem declaration uses 'sorry'Int.mul_eq_zero {a b:Int} (h: a * b = 0) : a = 0 b = 0 := a:Intb:Inth:a * b = 0a = 0b = 0 All goals completed! 🐙

Corollary 4.1.9 (Cancellation law) / Exercise 4.1.6

theorem declaration uses 'sorry'Int.mul_right_cancel₀ (a b c:Int) (h: a*c = b*c) (hc: c 0) : a = b := a:Intb:Intc:Inth:a * c = b * chc:c0a = b All goals completed! 🐙

Definition 4.1.10 (Ordering of the integers)

instance Int.instLE : LE Int where le n m := a:, m = n + a

Definition 4.1.10 (Ordering of the integers)

instance Int.instLT : LT Int where lt n m := ( a:, m = n + a) n mtheorem Int.le_iff (n m:Int) : n m a:, m = n + a := n:Intm:Intnma, m = n + a All goals completed! 🐙theorem Int.lt_iff (n m:Int): n < m ( a:, m = n + a) n m := n:Intm:Intn < m(∃ a, m = n + a)nm All goals completed! 🐙

Lemma 4.1.11(a) (Properties of order) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.gt_iff (a b:Int) : a > b n:, n 0 a = b + n := a:Intb:Inta > bn, n0a = b + n All goals completed! 🐙

Lemma 4.1.11(b) (Addition preserves order) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.add_gt_add_right {a b:Int} (c:Int) (h: a > b) : a+c > b+c := a:Intb:Intc:Inth:a > ba + c > b + c All goals completed! 🐙

Lemma 4.1.11(c) (Positive multiplication preserves order) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.mul_lt_mul_of_pos_left {a b c:Int} (hab : a > b) (hc: c > 0) : a*c > b*c := a:Intb:Intc:Inthab:a > bhc:c > 0a * c > b * c All goals completed! 🐙

Lemma 4.1.11(d) (Negation reverses order) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.neg_gt_neg {a b:Int} (h: a > b) : -a < -b := a:Intb:Inth:a > b-a < -b All goals completed! 🐙

Lemma 4.1.11(e) (Order is transitive) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.gt_trans {a b c:Int} (hab: a > b) (hbc: b > c) : a > c := a:Intb:Intc:Inthab:a > bhbc:b > ca > c All goals completed! 🐙

Lemma 4.1.11(f) (Order trichotomy) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.trichotomous' (a b c:Int) : a > b a < b a = b := a:Intb:Intc:Inta > ba < ba = b All goals completed! 🐙

Lemma 4.1.11(f) (Order trichotomy) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.not_gt_and_lt (a b:Int) : ¬ (a > b a < b):= a:Intb:Int¬(a > ba < b) All goals completed! 🐙

Lemma 4.1.11(f) (Order trichotomy) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.not_gt_and_eq (a b:Int) : ¬ (a > b a = b):= a:Intb:Int¬(a > ba = b) All goals completed! 🐙

Lemma 4.1.11(f) (Order trichotomy) / Exercise 4.1.7

theorem declaration uses 'sorry'Int.not_lt_and_eq (a b:Int) : ¬ (a < b a = b):= a:Intb:Int¬(a < ba = b) All goals completed! 🐙

(Not from textbook) The order is decidable. This exercise is only recommended for Lean experts. Alternatively, one can establish this fact in classical logic via classical; exact Classical.decRel _.

instance declaration uses 'sorry'Int.decidableRel : DecidableRel (· · : Int Int Prop) := DecidableRel fun x1 x2 => x1x2 All goals completed! 🐙

(Not from textbook) Int has the structure of a linear ordering.

instance declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Int.instLinearOrder : LinearOrder Int where le_refl := sorry le_trans := sorry lt_iff_le_not_le := sorry le_antisymm := sorry le_total := sorry toDecidableLE := decidableRel

Exercise 4.1.3

theorem declaration uses 'sorry'Int.neg_one_mul (a:Int) : -1 * a = -a := a:Int-1 * a = -a All goals completed! 🐙

Exercise 4.1.8

theorem declaration uses 'sorry'Int.no_induction : P: Int Prop, P 0 n, P n P (n+1) ¬ n, P n := P, P 0∀ (n : Int), P nP (n + 1)¬∀ (n : Int), P n All goals completed! 🐙

Exercise 4.1.9

theorem declaration uses 'sorry'Int.sq_nonneg (n:Int) : n*n 0 := n:Intn * n0 All goals completed! 🐙

Exercise 4.1.9

theorem declaration uses 'sorry'Int.sq_nonneg' (n:Int) : (m:Nat), n*n = m := n:Intm, n * n = m All goals completed! 🐙

Not in textbook: create an equivalence between Int and ℤ. This requires some familiarity with the API for Mathlib's version of the integers.

abbrev declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Int.equivInt : Int where toFun := Quotient.lift (fun a, b a - b) (∀ (a b : PreInt), ab → (fun x => match x with | { minuend := a, subtrahend := b } => ↑a - b) a = (fun x => match x with | { minuend := a, subtrahend := b } => ↑a - b) b All goals completed! 🐙) invFun := sorry left_inv n := sorry right_inv n := sorry

Not in textbook: equivalence preserves order

abbrev declaration uses 'sorry'Int.equivInt_order : Int ≃o where toEquiv := equivInt map_rel_iff' := ∀ {a b : Int}, equivInt aequivInt bab All goals completed! 🐙

Not in textbook: equivalence preserves ring operations

abbrev declaration uses 'sorry'declaration uses 'sorry'Int.equivInt_ring : Int ≃+* where toEquiv := equivInt map_add' := ∀ (x y : Int), equivInt.toFun (x + y) = equivInt.toFun x + equivInt.toFun y All goals completed! 🐙 map_mul' := ∀ (x y : Int), equivInt.toFun (x * y) = equivInt.toFun x * equivInt.toFun y All goals completed! 🐙end Section_4_1