Analysis I, Section 4.2
This file is a translation of Section 4.2 of Analysis I to Lean 4. All numbering refers to the original text.
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
-
Definition of the "Section 4.2" rationals,
Section_4_2.Int, as formal differencesa // bof integersa b:ℤ, up to equivalence. (This is a quotient of a scaffolding typeSection_4_2.PreRat, which consists of formal differences without any equivalence imposed.) -
field operations and order on these rationals, as well as an embedding of ℕ and ℤ
-
Equivalence with the Mathlib rationals
_root_.Rat(orℚ), which we will use going forward.
namespace Section_4_2structure PreRat where
numerator : ℤ
denominator : ℤ
nonzero : denominator ≠ 0Exercise 4.2.1
instance PreRat.instSetoid : Setoid PreRat where
r a b := a.numerator * b.denominator = b.numerator * a.denominator
iseqv := {
refl := ⊢ ∀ (x : PreRat), x.numerator * x.denominator = x.numerator * x.denominator All goals completed! 🐙
symm := ⊢ ∀ {x y : PreRat},
x.numerator * y.denominator = y.numerator * x.denominator → y.numerator * x.denominator = x.numerator * y.denominator All goals completed! 🐙
trans := ⊢ ∀ {x y z : PreRat},
x.numerator * y.denominator = y.numerator * x.denominator →
y.numerator * z.denominator = z.numerator * y.denominator →
x.numerator * z.denominator = z.numerator * x.denominator All goals completed! 🐙
}@[simp]
theorem PreRat.eq (a b c d:ℤ) (hb: b ≠ 0) (hd: d ≠ 0): (⟨ a,b,hb ⟩: PreRat) ≈ ⟨ c,d,hd ⟩ ↔ a * d = c * b := a:ℤb:ℤc:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ { numerator := a, denominator := b, nonzero := hb } ≈ { numerator := c, denominator := d, nonzero := hd } ↔
a * d = c * b All goals completed! 🐙abbrev Rat := Quotient PreRat.instSetoidWe give division a "junk" value of 0//1 if the denominator is zero
abbrev Rat.formalDiv (a b:ℤ) : Rat := Quotient.mk PreRat.instSetoid (if h:b ≠ 0 then ⟨ a,b,h ⟩ else ⟨ 0, 1, a:ℤb:ℤh:¬b ≠ 0⊢ 1 ≠ 0 All goals completed! 🐙 ⟩)infix:100 " // " => Rat.formalDivDefinition 4.2.1 (Rationals)
theorem Rat.eq (a c:ℤ) {b d:ℤ} (hb: b ≠ 0) (hd: d ≠ 0): a // b = c // d ↔ a * d = c * b := a:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ a // b = c // d ↔ a * d = c * b
All goals completed! 🐙Definition 4.2.1 (Rationals)
theorem Rat.eq_diff (n:Rat) : ∃ a b, b ≠ 0 ∧ n = a // b := n:Rat⊢ ∃ a b, b ≠ 0 ∧ n = a // b
n:Rat⊢ ∀ (a : PreRat), ∃ a_1 b, b ≠ 0 ∧ Quot.mk (⇑PreRat.instSetoid) a = a_1 // b; n:Rata:ℤb:ℤh:b ≠ 0⊢ ∃ a_1 b_1, b_1 ≠ 0 ∧ Quot.mk ⇑PreRat.instSetoid { numerator := a, denominator := b, nonzero := h } = a_1 // b_1
n:Rata:ℤb:ℤh:b ≠ 0⊢ b ≠ 0 ∧ Quot.mk ⇑PreRat.instSetoid { numerator := a, denominator := b, nonzero := h } = a // b; n:Rata:ℤb:ℤh:b ≠ 0⊢ Quot.mk ⇑PreRat.instSetoid { numerator := a, denominator := b, nonzero := h } = a // b
n:Rata:ℤb:ℤh:b ≠ 0⊢ Quot.mk ⇑PreRat.instSetoid { numerator := a, denominator := b, nonzero := h } =
⟦{ numerator := a, denominator := b, nonzero := ⋯ }⟧
All goals completed! 🐙Lemma 4.2.3 (Addition well-defined)
instance Rat.add_inst : Add Rat where
add := Quotient.lift₂ (fun ⟨ a, b, h1 ⟩ ⟨ c, d, h2 ⟩ ↦ (a*d+b*c) // (b*d)) (⊢ ∀ (a₁ b₁ a₂ b₂ : PreRat),
a₁ ≈ a₂ →
b₁ ≈ b₂ →
(fun x x_1 =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } =>
match x_1 with
| { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d))
a₁ b₁ =
(fun x x_1 =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } =>
match x_1 with
| { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d))
a₂ b₂
a:ℤb:ℤh1:b ≠ 0c:ℤd:ℤh2:d ≠ 0a':ℤb':ℤh1':b' ≠ 0c':ℤd':ℤh2':d' ≠ 0h3:{ numerator := a, denominator := b, nonzero := h1 } ≈ { numerator := a', denominator := b', nonzero := h1' }h4:{ numerator := c, denominator := d, nonzero := h2 } ≈ { numerator := c', denominator := d', nonzero := h2' }⊢ (fun x x_1 =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } =>
match x_1 with
| { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d))
{ numerator := a, denominator := b, nonzero := h1 } { numerator := c, denominator := d, nonzero := h2 } =
(fun x x_1 =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } =>
match x_1 with
| { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d))
{ numerator := a', denominator := b', nonzero := h1' } { numerator := c', denominator := d', nonzero := h2' }
a:ℤb:ℤh1:b ≠ 0c:ℤd:ℤh2:d ≠ 0a':ℤb':ℤh1':b' ≠ 0c':ℤd':ℤh2':d' ≠ 0h3:a * b' = a' * bh4:c * d' = c' * d⊢ (a * d + b * c) * (b' * d') = (a' * d' + b' * c') * (b * d)
calc
_ = (a*b')*d*d' + b*b'*(c*d') := a:ℤb:ℤh1:b ≠ 0c:ℤd:ℤh2:d ≠ 0a':ℤb':ℤh1':b' ≠ 0c':ℤd':ℤh2':d' ≠ 0h3:a * b' = a' * bh4:c * d' = c' * d⊢ (a * d + b * c) * (b' * d') = a * b' * d * d' + b * b' * (c * d') All goals completed! 🐙
_ = (a'*b)*d*d' + b*b'*(c'*d) := a:ℤb:ℤh1:b ≠ 0c:ℤd:ℤh2:d ≠ 0a':ℤb':ℤh1':b' ≠ 0c':ℤd':ℤh2':d' ≠ 0h3:a * b' = a' * bh4:c * d' = c' * d⊢ a * b' * d * d' + b * b' * (c * d') = a' * b * d * d' + b * b' * (c' * d) All goals completed! 🐙
_ = _ := a:ℤb:ℤh1:b ≠ 0c:ℤd:ℤh2:d ≠ 0a':ℤb':ℤh1':b' ≠ 0c':ℤd':ℤh2':d' ≠ 0h3:a * b' = a' * bh4:c * d' = c' * d⊢ a' * b * d * d' + b * b' * (c' * d) = (a' * d' + b' * c') * (b * d) All goals completed! 🐙
)Definition 4.2.2 (Addition of rationals)
theorem Rat.add_eq (a c:ℤ) {b d:ℤ} (hb: b ≠ 0) (hd: d ≠ 0) :(a // b) + (c // d) = (a*d + b*c) // (b*d) := a:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ a // b + c // d = (a * d + b * c) // (b * d)
a:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ a =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ d =
(if h : d ≠ 0 then { numerator := c, denominator := d, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ b =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ c =
(if h : d ≠ 0 then { numerator := c, denominator := d, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ b =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ d =
(if h : d ≠ 0 then { numerator := c, denominator := d, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominator
all_goals All goals completed! 🐙Lemma 4.2.3 (Multiplication well-defined)
instance Rat.mul_inst : Mul Rat where
mul := Quotient.lift₂ (fun ⟨ a, b, h1 ⟩ ⟨ c, d, h2 ⟩ ↦ (a*c) // (b*d)) (⊢ ∀ (a₁ b₁ a₂ b₂ : PreRat),
a₁ ≈ a₂ →
b₁ ≈ b₂ →
(fun x x_1 =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } =>
match x_1 with
| { numerator := c, denominator := d, nonzero := h2 } => (a * c) // (b * d))
a₁ b₁ =
(fun x x_1 =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } =>
match x_1 with
| { numerator := c, denominator := d, nonzero := h2 } => (a * c) // (b * d))
a₂ b₂ All goals completed! 🐙)Definition 4.2.2 (Multiplication of rationals)
theorem Rat.mul_eq (a c:ℤ) {b d:ℤ} (hb: b ≠ 0) (hd: d ≠ 0) :(a // b) * (c // d) = (a*c) // (b*d) := a:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ a // b * c // d = (a * c) // (b * d)
a:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ a =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ c =
(if h : d ≠ 0 then { numerator := c, denominator := d, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ b =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:ℤc:ℤb:ℤd:ℤhb:b ≠ 0hd:d ≠ 0⊢ d =
(if h : d ≠ 0 then { numerator := c, denominator := d, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominator
all_goals All goals completed! 🐙Lemma 4.2.3 (Negation well-defined)
instance Rat.neg_inst : Neg Rat where
neg := Quotient.lift (fun ⟨ a, b, h1 ⟩ ↦ (-a) // b) (⊢ ∀ (a b : PreRat),
a ≈ b →
(fun x =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } => (-a) // b)
a =
(fun x =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } => (-a) // b)
b All goals completed! 🐙)Definition 4.2.2 (Negation of rationals)
theorem Rat.neg_eq (a:ℤ) (hb: b ≠ 0) : - (a // b) = (-a) // b := b:ℤa:ℤhb:b ≠ 0⊢ -a // b = (-a) // b
b:ℤa:ℤhb:b ≠ 0⊢ a =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratorb:ℤa:ℤhb:b ≠ 0⊢ b =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominator
all_goals All goals completed! 🐙Embedding the integers in the rationals
instance Rat.instIntCast : IntCast Rat where
intCast a := a // 1instance Rat.instNatCast : NatCast Rat where
natCast n := (n:ℤ) // 1instance Rat.instOfNat : OfNat Rat n where
ofNat := (n:ℤ) // 1theorem Rat.coe_Int_eq (a:ℤ) : (a:Rat) = a // 1 := a:ℤ⊢ ↑a = a // 1
All goals completed! 🐙theorem Rat.coe_Nat_eq (n:ℕ) : (n:Rat) = n // 1 := n:ℕ⊢ ↑n = ↑n // 1
All goals completed! 🐙theorem Rat.of_Nat_eq (n:ℕ) : (ofNat(n):Rat) = (ofNat(n):Nat) // 1 := n:ℕ⊢ OfNat.ofNat n = ↑(OfNat.ofNat n) // 1
All goals completed! 🐙lemma Rat.add_of_int (a b:ℤ) : (a:Rat) + (b:Rat) = (a+b:ℤ) := a:ℤb:ℤ⊢ ↑a + ↑b = ↑(a + b) All goals completed! 🐙lemma Rat.mul_of_int (a b:ℤ) : (a:Rat) * (b:Rat) = (a*b:ℤ) := a:ℤb:ℤ⊢ ↑a * ↑b = ↑(a * b) All goals completed! 🐙lemma Rat.neg_of_int (a:ℤ) : - (a:Rat) = (-a:ℤ) := a:ℤ⊢ -↑a = ↑(-a)
All goals completed! 🐙theorem Rat.coe_Int_inj : Function.Injective (fun n:ℤ ↦ (n:Rat)) := ⊢ Function.Injective fun n => ↑n All goals completed! 🐙Whereas the book leaves the inverse of 0 undefined, it is more convenient in Lean to assign a "junk" value to this inverse; we arbitrarily choose this junk value to be 0.
instance Rat.instInv : Inv Rat where
inv := Quotient.lift (fun ⟨ a, b, h1 ⟩ ↦ b // a) (⊢ ∀ (a b : PreRat),
a ≈ b →
(fun x =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } => b // a)
a =
(fun x =>
match x with
| { numerator := a, denominator := b, nonzero := h1 } => b // a)
b
All goals completed! 🐙 -- hint: split into the `a=0` and `a≠0` cases
)lemma Rat.inv_eq (a:ℤ) (hb: b ≠ 0) : (a // b)⁻¹ = b // a := b:ℤa:ℤhb:b ≠ 0⊢ (a // b)⁻¹ = b // a
b:ℤa:ℤhb:b ≠ 0⊢ b =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatorb:ℤa:ℤhb:b ≠ 0⊢ a =
(if h : b ≠ 0 then { numerator := a, denominator := b, nonzero := h }
else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numerator
all_goals All goals completed! 🐙@[simp]
theorem Rat.inv_zero : (0:Rat)⁻¹ = 0 := ⊢ 0⁻¹ = 0
All goals completed! 🐙Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3
instance Rat.addGroup_inst : AddGroup Rat :=
AddGroup.ofLeftAxioms (⊢ ∀ (a b c : Rat), a + b + c = a + (b + c)
-- this proof is written to follow the structure of the original text.
x:Raty:Ratz:Rat⊢ x + y + z = x + (y + z)
y:Ratz:Rata:ℤb:ℤhb:b ≠ 0⊢ a // b + y + z = a // b + (y + z)
z:Rata:ℤb:ℤhb:b ≠ 0c:ℤd:ℤhd:d ≠ 0⊢ a // b + c // d + z = a // b + (c // d + z)
a:ℤb:ℤhb:b ≠ 0c:ℤd:ℤhd:d ≠ 0e:ℤf:ℤhf:f ≠ 0⊢ a // b + c // d + e // f = a // b + (c // d + e // f)
a:ℤb:ℤhb:b ≠ 0c:ℤd:ℤhd:d ≠ 0e:ℤf:ℤhf:f ≠ 0hbd:b * d ≠ 0⊢ a // b + c // d + e // f = a // b + (c // d + e // f)
a:ℤb:ℤhb:b ≠ 0c:ℤd:ℤhd:d ≠ 0e:ℤf:ℤhf:f ≠ 0hbd:b * d ≠ 0hdf:d * f ≠ 0⊢ a // b + c // d + e // f = a // b + (c // d + e // f)
a:ℤb:ℤhb:b ≠ 0c:ℤd:ℤhd:d ≠ 0e:ℤf:ℤhf:f ≠ 0hbd:b * d ≠ 0hdf:d * f ≠ 0hbdf:b * d * f ≠ 0⊢ a // b + c // d + e // f = a // b + (c // d + e // f)
a:ℤb:ℤhb:b ≠ 0c:ℤd:ℤhd:d ≠ 0e:ℤf:ℤhf:f ≠ 0hbd:b * d ≠ 0hdf:d * f ≠ 0hbdf:b * d * f ≠ 0⊢ ((a * d + b * c) * f + b * d * e) * (b * d * f) = (a * (d * f) + b * (c * f + d * e)) * (b * d * f)
All goals completed! 🐙
)
(⊢ ∀ (a : Rat), 0 + a = a All goals completed! 🐙) (⊢ ∀ (a : Rat), -a + a = 0 All goals completed! 🐙)Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3
instance Rat.instAddCommGroup : AddCommGroup Rat where
add_comm := ⊢ ∀ (a b : Rat), a + b = b + a All goals completed! 🐙Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3
instance Rat.instCommMonoid : CommMonoid Rat where
mul_comm := ⊢ ∀ (a b : Rat), a * b = b * a All goals completed! 🐙
mul_assoc := ⊢ ∀ (a b c : Rat), a * b * c = a * (b * c) All goals completed! 🐙
one_mul := ⊢ ∀ (a : Rat), 1 * a = a All goals completed! 🐙
mul_one := ⊢ ∀ (a : Rat), a * 1 = a All goals completed! 🐙Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3
instance Rat.instCommRing : CommRing Rat where
left_distrib := ⊢ ∀ (a b c : Rat), a * (b + c) = a * b + a * c All goals completed! 🐙
right_distrib := ⊢ ∀ (a b c : Rat), (a + b) * c = a * c + b * c All goals completed! 🐙
zero_mul := ⊢ ∀ (a : Rat), 0 * a = 0 All goals completed! 🐙
mul_zero := ⊢ ∀ (a : Rat), a * 0 = 0 All goals completed! 🐙
mul_assoc := ⊢ ∀ (a b c : Rat), a * b * c = a * (b * c) All goals completed! 🐙
natCast_succ := ⊢ ∀ (n : ℕ), ↑(n + 1) = ↑n + 1 All goals completed! 🐙instance Rat.instRatCast : RatCast Rat where
ratCast q := q.num // q.dentheorem Rat.coe_Rat_eq (a:ℤ) {b:ℤ} (hb: b ≠ 0) : (a/b:ℚ) = a // b := a:ℤb:ℤhb:b ≠ 0⊢ ↑(↑a / ↑b) = a // b
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑b⊢ ↑q = a // b
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.num⊢ ↑q = a // b
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.den⊢ ↑q = a // b
have hden : den ≠ 0 := a:ℤb:ℤhb:b ≠ 0⊢ ↑(↑a / ↑b) = a // b All goals completed! 🐙
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0⊢ num // den = a // b
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0⊢ num * b = a * den
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0⊢ ↑num * ↑b = ↑a * ↑den
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0hq:↑num / ↑den = q⊢ ↑num * ↑b = ↑a * ↑den
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0hq:↑num * ↑b = ↑a * ↑den⊢ ↑num * ↑b = ↑a * ↑dena:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0hq:↑num / ↑den = q⊢ ↑den ≠ 0a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0hq:↑num / ↑den = q⊢ ↑b ≠ 0
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0hq:↑num * ↑b = ↑a * ↑den⊢ ↑num * ↑b = ↑a * ↑den All goals completed! 🐙
a:ℤb:ℤhb:b ≠ 0q:ℚ := ↑a / ↑bnum:ℤ := q.numden:ℤ := ↑q.denhden:den ≠ 0hq:↑num / ↑den = q⊢ ↑den ≠ 0 All goals completed! 🐙
All goals completed! 🐙Default definition of division
instance Rat.instDivInvMonoid : DivInvMonoid Rat wheretheorem Rat.div_eq (q r:Rat) : q/r = q * r⁻¹ := q:Ratr:Rat⊢ q / r = q * r⁻¹ All goals completed! 🐙Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3
instance Rat.instField : Field Rat where
exists_pair_ne := ⊢ ∃ x y, x ≠ y All goals completed! 🐙
mul_inv_cancel := ⊢ ∀ (a : Rat), a ≠ 0 → a * a⁻¹ = 1 All goals completed! 🐙
inv_zero := ⊢ 0⁻¹ = 0 All goals completed! 🐙
ratCast_def := ⊢ ∀ (q : ℚ), ↑q = ↑q.num / ↑q.den
q:ℚ⊢ ↑q = ↑q.num / ↑q.den
q:ℚnum:ℤ := q.num⊢ ↑q = ↑num / ↑q.den
q:ℚnum:ℤ := q.numden:ℕ := q.den⊢ ↑q = ↑num / ↑den
have hden : (den:ℤ) ≠ 0 := ⊢ ∀ (q : ℚ), ↑q = ↑q.num / ↑q.den All goals completed! 🐙
q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ ↑(↑q.num / ↑q.den) = ↑num / ↑den
q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ ↑num / ↑den = q.num // ↑den
q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ num * 1 * ↑den = q.num * (1 * ↑den)q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ 1 * ↑den ≠ 0q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ ↑den ≠ 0q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ 1 ≠ 0q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ ↑den ≠ 0q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ 1 ≠ 0
q:ℚnum:ℤ := q.numden:ℕ := q.denhden:↑den ≠ 0⊢ num * 1 * ↑den = q.num * (1 * ↑den) All goals completed! 🐙
all_goals All goals completed! 🐙
qsmul := _
nnqsmul := _example : (3//4) / (5//6) = 9 // 10 := ⊢ 3 // 4 / 5 // 6 = 9 // 10 All goals completed! 🐙def Rat.coe_int_hom : ℤ →+* Rat where
toFun n := (n:Rat)
map_zero' := ⊢ ↑0 = 0 All goals completed! 🐙
map_one' := ⊢ ↑1 = 1 All goals completed! 🐙
map_add' := ⊢ ∀ (x y : ℤ), ↑(x + y) = ↑x + ↑y All goals completed! 🐙
map_mul' := ⊢ ∀ (x y : ℤ), ↑(x * y) = ↑x * ↑y All goals completed! 🐙(Not from textbook) The textbook rationals are isomorphic (as a field) to the Mathlib rationals
def Rat.equiv_rat : ℚ ≃+* Rat where
toFun n := (n:Rat)
invFun := ⊢ Rat → ℚ All goals completed! 🐙
map_add' := ⊢ ∀ (x y : ℚ), ↑(x + y) = ↑x + ↑y All goals completed! 🐙
map_mul' := ⊢ ∀ (x y : ℚ), ↑(x * y) = ↑x * ↑y All goals completed! 🐙
left_inv := ⊢ Function.LeftInverse sorry fun n => ↑n All goals completed! 🐙
right_inv := ⊢ Function.RightInverse sorry fun n => ↑n All goals completed! 🐙Definition 4.2.6 (positivity)
def Rat.isPos (q:Rat) : Prop := ∃ a b:ℤ, a > 0 ∧ b > 0 ∧ q = a/bDefinition 4.2.6 (negativity)
def Rat.isNeg (q:Rat) : Prop := ∃ r:Rat, r.isPos ∧ q = -rLemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4
theorem Rat.trichotomous (x:Rat) : x = 0 ∨ x.isPos ∨ x.isNeg := x:Rat⊢ x = 0 ∨ x.isPos ∨ x.isNeg All goals completed! 🐙Lemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4
theorem Rat.not_zero_and_pos (x:Rat) : ¬(x = 0 ∧ x.isPos) := x:Rat⊢ ¬(x = 0 ∧ x.isPos) All goals completed! 🐙Lemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4
theorem Rat.not_zero_and_neg (x:Rat) : ¬(x = 0 ∧ x.isNeg) := x:Rat⊢ ¬(x = 0 ∧ x.isNeg) All goals completed! 🐙Lemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4
theorem Rat.not_pos_and_neg (x:Rat) : ¬(x.isPos ∧ x.isNeg) := x:Rat⊢ ¬(x.isPos ∧ x.isNeg) All goals completed! 🐙Definition 4.2.8 (Ordering of the rationals)
instance Rat.instLT : LT Rat where
lt x y := (x-y).isNegDefinition 4.2.8 (Ordering of the rationals)
instance Rat.instLE : LE Rat where
le x y := (x < y) ∨ (x = y)theorem Rat.lt_iff (x y:Rat) : x < y ↔ (x-y).isNeg := x:Raty:Rat⊢ x < y ↔ (x - y).isNeg All goals completed! 🐙theorem Rat.le_iff (x y:Rat) : x ≤ y ↔ (x < y) ∨ (x = y) := x:Raty:Rat⊢ x ≤ y ↔ x < y ∨ x = y All goals completed! 🐙theorem Rat.gt_iff (x y:Rat) : x > y ↔ (x-y).isPos := x:Raty:Rat⊢ x > y ↔ (x - y).isPos All goals completed! 🐙theorem Rat.ge_iff (x y:Rat) : x ≥ y ↔ (x > y) ∨ (x = y) := x:Raty:Rat⊢ x ≥ y ↔ x > y ∨ x = y All goals completed! 🐙Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5
theorem Rat.trichotomous' (x y z:Rat) : x > y ∨ x < y ∨ x = y := x:Raty:Ratz:Rat⊢ x > y ∨ x < y ∨ x = y All goals completed! 🐙Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5
theorem Rat.not_gt_and_lt (x y:Rat) : ¬ (x > y ∧ x < y):= x:Raty:Rat⊢ ¬(x > y ∧ x < y) All goals completed! 🐙Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5
theorem Rat.not_gt_and_eq (x y:Rat) : ¬ (x > y ∧ x = y):= x:Raty:Rat⊢ ¬(x > y ∧ x = y) All goals completed! 🐙Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5
theorem Rat.not_lt_and_eq (x y:Rat) : ¬ (x < y ∧ x = y):= x:Raty:Rat⊢ ¬(x < y ∧ x = y) All goals completed! 🐙Proposition 4.2.9(b) (order is anti-symmetric) / Exercise 4.2.5
theorem Rat.antisymm (x y:Rat) : x < y ↔ (y - x).isPos := x:Raty:Rat⊢ x < y ↔ (y - x).isPos All goals completed! 🐙Proposition 4.2.9(c) (order is transitive) / Exercise 4.2.5
theorem Rat.lt_trans {x y z:Rat} (hxy: x < y) (hyz: y < z) : x < z := x:Raty:Ratz:Rathxy:x < yhyz:y < z⊢ x < z All goals completed! 🐙Proposition 4.2.9(d) (addition preserves order) / Exercise 4.2.5
theorem Rat.add_lt_add_right {x y:Rat} (z:Rat) (hxy: x < y) : x + z < y + z := x:Raty:Ratz:Rathxy:x < y⊢ x + z < y + z All goals completed! 🐙Proposition 4.2.9(e) (positive multiplication preserves order) / Exercise 4.2.5
theorem Rat.mul_lt_mul_right {x y z:Rat} (hxy: x < y) (hz: z.isPos) : x * z < y * z := x:Raty:Ratz:Rathxy:x < yhz:z.isPos⊢ x * z < y * z All goals completed! 🐙
(Not from textbook) The order is decidable. This exercise is only recommended for Lean experts. Alternatively, one can establish this fact in classical logic via classical; exact Classical.decRel _
instance Rat.decidableRel : DecidableRel (· ≤ · : Rat → Rat → Prop) := ⊢ DecidableRel fun x1 x2 => x1 ≤ x2
All goals completed! 🐙(Not from textbook) Rat has the structure of a linear ordering.
instance Rat.instLinearOrder : LinearOrder Rat where
le_refl := sorry
le_trans := sorry
lt_iff_le_not_le := sorry
le_antisymm := sorry
le_total := sorry
toDecidableLE := decidableRel(Not from textbook) Rat has the structure of a strict ordered ring.
instance Rat.instIsStrictOrderedRing : IsStrictOrderedRing Rat where
add_le_add_left := ⊢ ∀ (a b : Rat), a ≤ b → ∀ (c : Rat), c + a ≤ c + b All goals completed! 🐙
add_le_add_right := ⊢ ∀ (a b : Rat), a ≤ b → ∀ (c : Rat), a + c ≤ b + c All goals completed! 🐙
mul_lt_mul_of_pos_left := ⊢ ∀ (a b c : Rat), a < b → 0 < c → c * a < c * b All goals completed! 🐙
mul_lt_mul_of_pos_right := ⊢ ∀ (a b c : Rat), a < b → 0 < c → a * c < b * c All goals completed! 🐙
le_of_add_le_add_left := ⊢ ∀ (a b c : Rat), a + b ≤ a + c → b ≤ c All goals completed! 🐙
zero_le_one := ⊢ 0 ≤ 1 All goals completed! 🐙Exercise 4.2.6
theorem Rat.mul_lt_mul_right_of_neg (x y z:Rat) (hxy: x < y) (hz: z.isNeg) : x * z > y * z := x:Raty:Ratz:Rathxy:x < yhz:z.isNeg⊢ x * z > y * z All goals completed! 🐙Not in textbook: create an equivalence between Rat and ℚ. This requires some familiarity with the API for Mathlib's version of the rationals.
abbrev Rat.equivRat : Rat ≃ ℚ where
toFun := Quotient.lift (fun ⟨ a, b, h ⟩ ↦ a / b) (⊢ ∀ (a b : PreRat),
a ≈ b →
(fun x =>
match x with
| { numerator := a, denominator := b, nonzero := h } => ↑a / ↑b)
a =
(fun x =>
match x with
| { numerator := a, denominator := b, nonzero := h } => ↑a / ↑b)
b
All goals completed! 🐙)
invFun := sorry
left_inv n := sorry
right_inv n := sorryNot in textbook: equivalence preserves order
abbrev Rat.equivRat_order : Rat ≃o ℚ where
toEquiv := equivRat
map_rel_iff' := ⊢ ∀ {a b : Rat}, equivRat a ≤ equivRat b ↔ a ≤ b All goals completed! 🐙Not in textbook: equivalence preserves ring operations
abbrev Rat.equivRat_ring : Rat ≃+* ℚ where
toEquiv := equivRat
map_add' := ⊢ ∀ (x y : Rat), equivRat.toFun (x + y) = equivRat.toFun x + equivRat.toFun y All goals completed! 🐙
map_mul' := ⊢ ∀ (x y : Rat), equivRat.toFun (x * y) = equivRat.toFun x * equivRat.toFun y All goals completed! 🐙end Section_4_2