Analysis I, Section 4.2

This file is a translation of Section 4.2 of Analysis I to Lean 4. All numbering refers to the original text.

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

namespace Section_4_2structure PreRat where numerator : denominator : nonzero : denominator 0

Exercise 4.2.1

instance declaration uses 'sorry'PreRat.instSetoid : Setoid PreRat where r a b := a.numerator * b.denominator = b.numerator * a.denominator iseqv := { refl := ∀ (x : PreRat), x.numerator * x.denominator = x.numerator * x.denominator All goals completed! 🐙 symm := ∀ {x y : PreRat}, x.numerator * y.denominator = y.numerator * x.denominatory.numerator * x.denominator = x.numerator * y.denominator All goals completed! 🐙 trans := ∀ {x y z : PreRat}, x.numerator * y.denominator = y.numerator * x.denominatory.numerator * z.denominator = z.numerator * y.denominatorx.numerator * z.denominator = z.numerator * x.denominator All goals completed! 🐙 }@[simp] theorem PreRat.eq (a b c d:) (hb: b 0) (hd: d 0): ( a,b,hb : PreRat) c,d,hd a * d = c * b := a:b:c:d:hb:b0hd:d0{ numerator := a, denominator := b, nonzero := hb }{ numerator := c, denominator := d, nonzero := hd }a * d = c * b All goals completed! 🐙abbrev Rat := Quotient PreRat.instSetoid

We give division a "junk" value of 0//1 if the denominator is zero

abbrev Rat.formalDiv (a b:) : Rat := Quotient.mk PreRat.instSetoid (if h:b 0 then a,b,h else 0, 1, a:b:h:¬b010 All goals completed! 🐙 )infix:100 " // " => Rat.formalDiv

Definition 4.2.1 (Rationals)

theorem Rat.eq (a c:) {b d:} (hb: b 0) (hd: d 0): a // b = c // d a * d = c * b := a:c:b:d:hb:b0hd:d0a // b = c // da * d = c * b All goals completed! 🐙

Definition 4.2.1 (Rationals)

theorem Rat.eq_diff (n:Rat) : a b, b 0 n = a // b := n:Rata b, b0n = a // b n:Rat∀ (a : PreRat), ∃ a_1 b, b0Quot.mk (⇑PreRat.instSetoid) a = a_1 // b; n:Rata:b:h:b0a_1 b_1, b_10Quot.mkPreRat.instSetoid { numerator := a, denominator := b, nonzero := h } = a_1 // b_1 n:Rata:b:h:b0b0Quot.mkPreRat.instSetoid { numerator := a, denominator := b, nonzero := h } = a // b; n:Rata:b:h:b0Quot.mkPreRat.instSetoid { numerator := a, denominator := b, nonzero := h } = a // b n:Rata:b:h:b0Quot.mkPreRat.instSetoid { numerator := a, denominator := b, nonzero := h } = { numerator := a, denominator := b, nonzero := ⋯ } All goals completed! 🐙

Lemma 4.2.3 (Addition well-defined)

instance Rat.add_inst : Add Rat where add := Quotient.lift₂ (fun a, b, h1 c, d, h2 (a*d+b*c) // (b*d)) (∀ (a₁ b₁ a₂ b₂ : PreRat), a₁a₂b₁b₂ → (fun x x_1 => match x with | { numerator := a, denominator := b, nonzero := h1 } => match x_1 with | { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d)) a₁ b₁ = (fun x x_1 => match x with | { numerator := a, denominator := b, nonzero := h1 } => match x_1 with | { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d)) a₂ b₂ a:b:h1:b0c:d:h2:d0a':b':h1':b'0c':d':h2':d'0h3:{ numerator := a, denominator := b, nonzero := h1 }{ numerator := a', denominator := b', nonzero := h1' }h4:{ numerator := c, denominator := d, nonzero := h2 }{ numerator := c', denominator := d', nonzero := h2' }(fun x x_1 => match x with | { numerator := a, denominator := b, nonzero := h1 } => match x_1 with | { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d)) { numerator := a, denominator := b, nonzero := h1 } { numerator := c, denominator := d, nonzero := h2 } = (fun x x_1 => match x with | { numerator := a, denominator := b, nonzero := h1 } => match x_1 with | { numerator := c, denominator := d, nonzero := h2 } => (a * d + b * c) // (b * d)) { numerator := a', denominator := b', nonzero := h1' } { numerator := c', denominator := d', nonzero := h2' } a:b:h1:b0c:d:h2:d0a':b':h1':b'0c':d':h2':d'0h3:a * b' = a' * bh4:c * d' = c' * d(a * d + b * c) * (b' * d') = (a' * d' + b' * c') * (b * d) calc _ = (a*b')*d*d' + b*b'*(c*d') := a:b:h1:b0c:d:h2:d0a':b':h1':b'0c':d':h2':d'0h3:a * b' = a' * bh4:c * d' = c' * d(a * d + b * c) * (b' * d') = a * b' * d * d' + b * b' * (c * d') All goals completed! 🐙 _ = (a'*b)*d*d' + b*b'*(c'*d) := a:b:h1:b0c:d:h2:d0a':b':h1':b'0c':d':h2':d'0h3:a * b' = a' * bh4:c * d' = c' * da * b' * d * d' + b * b' * (c * d') = a' * b * d * d' + b * b' * (c' * d) All goals completed! 🐙 _ = _ := a:b:h1:b0c:d:h2:d0a':b':h1':b'0c':d':h2':d'0h3:a * b' = a' * bh4:c * d' = c' * da' * b * d * d' + b * b' * (c' * d) = (a' * d' + b' * c') * (b * d) All goals completed! 🐙 )

Definition 4.2.2 (Addition of rationals)

theorem Rat.add_eq (a c:) {b d:} (hb: b 0) (hd: d 0) :(a // b) + (c // d) = (a*d + b*c) // (b*d) := a:c:b:d:hb:b0hd:d0a // b + c // d = (a * d + b * c) // (b * d) a:c:b:d:hb:b0hd:d0a = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:c:b:d:hb:b0hd:d0d = (if h : d0 then { numerator := c, denominator := d, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:c:b:d:hb:b0hd:d0b = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:c:b:d:hb:b0hd:d0c = (if h : d0 then { numerator := c, denominator := d, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:c:b:d:hb:b0hd:d0b = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:c:b:d:hb:b0hd:d0d = (if h : d0 then { numerator := c, denominator := d, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominator all_goals All goals completed! 🐙

Lemma 4.2.3 (Multiplication well-defined)

instance declaration uses 'sorry'Rat.mul_inst : Mul Rat where mul := Quotient.lift₂ (fun a, b, h1 c, d, h2 (a*c) // (b*d)) (∀ (a₁ b₁ a₂ b₂ : PreRat), a₁a₂b₁b₂ → (fun x x_1 => match x with | { numerator := a, denominator := b, nonzero := h1 } => match x_1 with | { numerator := c, denominator := d, nonzero := h2 } => (a * c) // (b * d)) a₁ b₁ = (fun x x_1 => match x with | { numerator := a, denominator := b, nonzero := h1 } => match x_1 with | { numerator := c, denominator := d, nonzero := h2 } => (a * c) // (b * d)) a₂ b₂ All goals completed! 🐙)

Definition 4.2.2 (Multiplication of rationals)

theorem Rat.mul_eq (a c:) {b d:} (hb: b 0) (hd: d 0) :(a // b) * (c // d) = (a*c) // (b*d) := a:c:b:d:hb:b0hd:d0a // b * c // d = (a * c) // (b * d) a:c:b:d:hb:b0hd:d0a = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:c:b:d:hb:b0hd:d0c = (if h : d0 then { numerator := c, denominator := d, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratora:c:b:d:hb:b0hd:d0b = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatora:c:b:d:hb:b0hd:d0d = (if h : d0 then { numerator := c, denominator := d, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominator all_goals All goals completed! 🐙

Lemma 4.2.3 (Negation well-defined)

instance declaration uses 'sorry'Rat.neg_inst : Neg Rat where neg := Quotient.lift (fun a, b, h1 (-a) // b) (∀ (a b : PreRat), ab → (fun x => match x with | { numerator := a, denominator := b, nonzero := h1 } => (-a) // b) a = (fun x => match x with | { numerator := a, denominator := b, nonzero := h1 } => (-a) // b) b All goals completed! 🐙)

Definition 4.2.2 (Negation of rationals)

theorem Rat.neg_eq (a:) (hb: b 0) : - (a // b) = (-a) // b := b:a:hb:b0-a // b = (-a) // b b:a:hb:b0a = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numeratorb:a:hb:b0b = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominator all_goals All goals completed! 🐙

Embedding the integers in the rationals

instance Rat.instIntCast : IntCast Rat where intCast a := a // 1instance Rat.instNatCast : NatCast Rat where natCast n := (n:) // 1instance Rat.instOfNat : OfNat Rat n where ofNat := (n:) // 1theorem Rat.coe_Int_eq (a:) : (a:Rat) = a // 1 := a:a = a // 1 All goals completed! 🐙theorem Rat.coe_Nat_eq (n:) : (n:Rat) = n // 1 := n:n = n // 1 All goals completed! 🐙theorem Rat.of_Nat_eq (n:) : (ofNat(n):Rat) = (ofNat(n):Nat) // 1 := n:OfNat.ofNat n = ↑(OfNat.ofNat n) // 1 All goals completed! 🐙lemma declaration uses 'sorry'Rat.add_of_int (a b:) : (a:Rat) + (b:Rat) = (a+b:) := a:b:a + b = (a + b) All goals completed! 🐙lemma declaration uses 'sorry'Rat.mul_of_int (a b:) : (a:Rat) * (b:Rat) = (a*b:) := a:b:a * b = (a * b) All goals completed! 🐙lemma Rat.neg_of_int (a:) : - (a:Rat) = (-a:) := a:-a = (-a) All goals completed! 🐙theorem declaration uses 'sorry'Rat.coe_Int_inj : Function.Injective (fun n: (n:Rat)) := Function.Injective fun n => ↑n All goals completed! 🐙

Whereas the book leaves the inverse of 0 undefined, it is more convenient in Lean to assign a "junk" value to this inverse; we arbitrarily choose this junk value to be 0.

instance declaration uses 'sorry'Rat.instInv : Inv Rat where inv := Quotient.lift (fun a, b, h1 b // a) (∀ (a b : PreRat), ab → (fun x => match x with | { numerator := a, denominator := b, nonzero := h1 } => b // a) a = (fun x => match x with | { numerator := a, denominator := b, nonzero := h1 } => b // a) b All goals completed! 🐙 -- hint: split into the `a=0` and `a≠0` cases )lemma Rat.inv_eq (a:) (hb: b 0) : (a // b)⁻¹ = b // a := b:a:hb:b0(a // b)⁻¹ = b // a b:a:hb:b0b = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).denominatorb:a:hb:b0a = (if h : b0 then { numerator := a, denominator := b, nonzero := h } else { numerator := 0, denominator := 1, nonzero := formalDiv._proof_3 }).numerator all_goals All goals completed! 🐙@[simp] theorem Rat.inv_zero : (0:Rat)⁻¹ = 0 := 0⁻¹ = 0 All goals completed! 🐙

Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3

instance declaration uses 'sorry'declaration uses 'sorry'Rat.addGroup_inst : AddGroup Rat := AddGroup.ofLeftAxioms (∀ (a b c : Rat), a + b + c = a + (b + c) -- this proof is written to follow the structure of the original text. x:Raty:Ratz:Ratx + y + z = x + (y + z) y:Ratz:Rata:b:hb:b0a // b + y + z = a // b + (y + z) z:Rata:b:hb:b0c:d:hd:d0a // b + c // d + z = a // b + (c // d + z) a:b:hb:b0c:d:hd:d0e:f:hf:f0a // b + c // d + e // f = a // b + (c // d + e // f) a:b:hb:b0c:d:hd:d0e:f:hf:f0hbd:b * d0a // b + c // d + e // f = a // b + (c // d + e // f) a:b:hb:b0c:d:hd:d0e:f:hf:f0hbd:b * d0hdf:d * f0a // b + c // d + e // f = a // b + (c // d + e // f) a:b:hb:b0c:d:hd:d0e:f:hf:f0hbd:b * d0hdf:d * f0hbdf:b * d * f0a // b + c // d + e // f = a // b + (c // d + e // f) a:b:hb:b0c:d:hd:d0e:f:hf:f0hbd:b * d0hdf:d * f0hbdf:b * d * f0((a * d + b * c) * f + b * d * e) * (b * d * f) = (a * (d * f) + b * (c * f + d * e)) * (b * d * f) All goals completed! 🐙 ) (∀ (a : Rat), 0 + a = a All goals completed! 🐙) (∀ (a : Rat), -a + a = 0 All goals completed! 🐙)

Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3

instance declaration uses 'sorry'Rat.instAddCommGroup : AddCommGroup Rat where add_comm := ∀ (a b : Rat), a + b = b + a All goals completed! 🐙

Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3

instance declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Rat.instCommMonoid : CommMonoid Rat where mul_comm := ∀ (a b : Rat), a * b = b * a All goals completed! 🐙 mul_assoc := ∀ (a b c : Rat), a * b * c = a * (b * c) All goals completed! 🐙 one_mul := ∀ (a : Rat), 1 * a = a All goals completed! 🐙 mul_one := ∀ (a : Rat), a * 1 = a All goals completed! 🐙

Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3

instance declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Rat.instCommRing : CommRing Rat where left_distrib := ∀ (a b c : Rat), a * (b + c) = a * b + a * c All goals completed! 🐙 right_distrib := ∀ (a b c : Rat), (a + b) * c = a * c + b * c All goals completed! 🐙 zero_mul := ∀ (a : Rat), 0 * a = 0 All goals completed! 🐙 mul_zero := ∀ (a : Rat), a * 0 = 0 All goals completed! 🐙 mul_assoc := ∀ (a b c : Rat), a * b * c = a * (b * c) All goals completed! 🐙 natCast_succ := ∀ (n : ), (n + 1) = n + 1 All goals completed! 🐙instance Rat.instRatCast : RatCast Rat where ratCast q := q.num // q.dentheorem Rat.coe_Rat_eq (a:) {b:} (hb: b 0) : (a/b:) = a // b := a:b:hb:b0(a / b) = a // b a:b:hb:b0q: := ↑a / bq = a // b a:b:hb:b0q: := ↑a / bnum: := q.numq = a // b a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denq = a // b have hden : den 0 := a:b:hb:b0(a / b) = a // b All goals completed! 🐙 a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0num // den = a // b a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0num * b = a * den a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0num * b = a * den a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0hq:num / den = qnum * b = a * den a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0hq:num * b = a * dennum * b = a * dena:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0hq:num / den = qden0a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0hq:num / den = qb0 a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0hq:num * b = a * dennum * b = a * den All goals completed! 🐙 a:b:hb:b0q: := ↑a / bnum: := q.numden: := ↑q.denhden:den0hq:num / den = qden0 All goals completed! 🐙 All goals completed! 🐙

Default definition of division

instance Rat.instDivInvMonoid : DivInvMonoid Rat wheretheorem Rat.div_eq (q r:Rat) : q/r = q * r⁻¹ := q:Ratr:Ratq / r = q * r⁻¹ All goals completed! 🐙

Proposition 4.2.4 (laws of algebra) / Exercise 4.2.3

instance declaration uses 'sorry'declaration uses 'sorry'Rat.instField : Field Rat where exists_pair_ne := x y, xy All goals completed! 🐙 mul_inv_cancel := ∀ (a : Rat), a0 → a * a⁻¹ = 1 All goals completed! 🐙 inv_zero := 0⁻¹ = 0 All goals completed! 🐙 ratCast_def := ∀ (q : ), ↑q = q.num / q.den q:q = q.num / q.den q:num: := q.numq = num / q.den q:num: := q.numden: := q.denq = num / den have hden : (den:) 0 := ∀ (q : ), ↑q = q.num / q.den All goals completed! 🐙 q:num: := q.numden: := q.denhden:den0(q.num / q.den) = num / den q:num: := q.numden: := q.denhden:den0num / den = q.num // den q:num: := q.numden: := q.denhden:den0num * 1 * den = q.num * (1 * den)q:num: := q.numden: := q.denhden:den01 * den0q:num: := q.numden: := q.denhden:den0den0q:num: := q.numden: := q.denhden:den010q:num: := q.numden: := q.denhden:den0den0q:num: := q.numden: := q.denhden:den010 q:num: := q.numden: := q.denhden:den0num * 1 * den = q.num * (1 * den) All goals completed! 🐙 all_goals All goals completed! 🐙 qsmul := _ nnqsmul := _declaration uses 'sorry'example : (3//4) / (5//6) = 9 // 10 := 3 // 4 / 5 // 6 = 9 // 10 All goals completed! 🐙def declaration uses 'sorry'declaration uses 'sorry'Rat.coe_int_hom : →+* Rat where toFun n := (n:Rat) map_zero' := ↑0 = 0 All goals completed! 🐙 map_one' := ↑1 = 1 All goals completed! 🐙 map_add' := ∀ (x y : ), ↑(x + y) = x + y All goals completed! 🐙 map_mul' := ∀ (x y : ), ↑(x * y) = x * y All goals completed! 🐙

(Not from textbook) The textbook rationals are isomorphic (as a field) to the Mathlib rationals

def declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Rat.equiv_rat : ≃+* Rat where toFun n := (n:Rat) invFun := Rat All goals completed! 🐙 map_add' := ∀ (x y : ), ↑(x + y) = x + y All goals completed! 🐙 map_mul' := ∀ (x y : ), ↑(x * y) = x * y All goals completed! 🐙 left_inv := Function.LeftInverse sorry fun n => ↑n All goals completed! 🐙 right_inv := Function.RightInverse sorry fun n => ↑n All goals completed! 🐙

Definition 4.2.6 (positivity)

def Rat.isPos (q:Rat) : Prop := a b:, a > 0 b > 0 q = a/b

Definition 4.2.6 (negativity)

def Rat.isNeg (q:Rat) : Prop := r:Rat, r.isPos q = -r

Lemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4

theorem declaration uses 'sorry'Rat.trichotomous (x:Rat) : x = 0 x.isPos x.isNeg := x:Ratx = 0x.isPosx.isNeg All goals completed! 🐙

Lemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4

theorem declaration uses 'sorry'Rat.not_zero_and_pos (x:Rat) : ¬(x = 0 x.isPos) := x:Rat¬(x = 0x.isPos) All goals completed! 🐙

Lemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4

theorem declaration uses 'sorry'Rat.not_zero_and_neg (x:Rat) : ¬(x = 0 x.isNeg) := x:Rat¬(x = 0x.isNeg) All goals completed! 🐙

Lemma 4.2.7 (trichotomy of rationals) / Exercise 4.2.4

theorem declaration uses 'sorry'Rat.not_pos_and_neg (x:Rat) : ¬(x.isPos x.isNeg) := x:Rat¬(x.isPosx.isNeg) All goals completed! 🐙

Definition 4.2.8 (Ordering of the rationals)

instance Rat.instLT : LT Rat where lt x y := (x-y).isNeg

Definition 4.2.8 (Ordering of the rationals)

instance Rat.instLE : LE Rat where le x y := (x < y) (x = y)theorem Rat.lt_iff (x y:Rat) : x < y (x-y).isNeg := x:Raty:Ratx < y(x - y).isNeg All goals completed! 🐙theorem Rat.le_iff (x y:Rat) : x y (x < y) (x = y) := x:Raty:Ratxyx < yx = y All goals completed! 🐙theorem declaration uses 'sorry'Rat.gt_iff (x y:Rat) : x > y (x-y).isPos := x:Raty:Ratx > y(x - y).isPos All goals completed! 🐙theorem declaration uses 'sorry'Rat.ge_iff (x y:Rat) : x y (x > y) (x = y) := x:Raty:Ratxyx > yx = y All goals completed! 🐙

Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.trichotomous' (x y z:Rat) : x > y x < y x = y := x:Raty:Ratz:Ratx > yx < yx = y All goals completed! 🐙

Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.not_gt_and_lt (x y:Rat) : ¬ (x > y x < y):= x:Raty:Rat¬(x > yx < y) All goals completed! 🐙

Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.not_gt_and_eq (x y:Rat) : ¬ (x > y x = y):= x:Raty:Rat¬(x > yx = y) All goals completed! 🐙

Proposition 4.2.9(a) (order trichotomy) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.not_lt_and_eq (x y:Rat) : ¬ (x < y x = y):= x:Raty:Rat¬(x < yx = y) All goals completed! 🐙

Proposition 4.2.9(b) (order is anti-symmetric) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.antisymm (x y:Rat) : x < y (y - x).isPos := x:Raty:Ratx < y(y - x).isPos All goals completed! 🐙

Proposition 4.2.9(c) (order is transitive) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.lt_trans {x y z:Rat} (hxy: x < y) (hyz: y < z) : x < z := x:Raty:Ratz:Rathxy:x < yhyz:y < zx < z All goals completed! 🐙

Proposition 4.2.9(d) (addition preserves order) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.add_lt_add_right {x y:Rat} (z:Rat) (hxy: x < y) : x + z < y + z := x:Raty:Ratz:Rathxy:x < yx + z < y + z All goals completed! 🐙

Proposition 4.2.9(e) (positive multiplication preserves order) / Exercise 4.2.5

theorem declaration uses 'sorry'Rat.mul_lt_mul_right {x y z:Rat} (hxy: x < y) (hz: z.isPos) : x * z < y * z := x:Raty:Ratz:Rathxy:x < yhz:z.isPosx * z < y * z All goals completed! 🐙

(Not from textbook) The order is decidable. This exercise is only recommended for Lean experts. Alternatively, one can establish this fact in classical logic via classical; exact Classical.decRel _

instance declaration uses 'sorry'Rat.decidableRel : DecidableRel (· · : Rat Rat Prop) := DecidableRel fun x1 x2 => x1x2 All goals completed! 🐙

(Not from textbook) Rat has the structure of a linear ordering.

instance declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Rat.instLinearOrder : LinearOrder Rat where le_refl := sorry le_trans := sorry lt_iff_le_not_le := sorry le_antisymm := sorry le_total := sorry toDecidableLE := decidableRel

(Not from textbook) Rat has the structure of a strict ordered ring.

instance declaration uses 'sorry'Rat.instIsStrictOrderedRing : IsStrictOrderedRing Rat where add_le_add_left := ∀ (a b : Rat), ab → ∀ (c : Rat), c + ac + b All goals completed! 🐙 add_le_add_right := ∀ (a b : Rat), ab → ∀ (c : Rat), a + cb + c All goals completed! 🐙 mul_lt_mul_of_pos_left := ∀ (a b c : Rat), a < b → 0 < cc * a < c * b All goals completed! 🐙 mul_lt_mul_of_pos_right := ∀ (a b c : Rat), a < b → 0 < ca * c < b * c All goals completed! 🐙 le_of_add_le_add_left := ∀ (a b c : Rat), a + ba + cbc All goals completed! 🐙 zero_le_one := 01 All goals completed! 🐙

Exercise 4.2.6

theorem declaration uses 'sorry'Rat.mul_lt_mul_right_of_neg (x y z:Rat) (hxy: x < y) (hz: z.isNeg) : x * z > y * z := x:Raty:Ratz:Rathxy:x < yhz:z.isNegx * z > y * z All goals completed! 🐙

Not in textbook: create an equivalence between Rat and ℚ. This requires some familiarity with the API for Mathlib's version of the rationals.

abbrev declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'declaration uses 'sorry'Rat.equivRat : Rat where toFun := Quotient.lift (fun a, b, h a / b) (∀ (a b : PreRat), ab → (fun x => match x with | { numerator := a, denominator := b, nonzero := h } => ↑a / b) a = (fun x => match x with | { numerator := a, denominator := b, nonzero := h } => ↑a / b) b All goals completed! 🐙) invFun := sorry left_inv n := sorry right_inv n := sorry

Not in textbook: equivalence preserves order

abbrev declaration uses 'sorry'Rat.equivRat_order : Rat ≃o where toEquiv := equivRat map_rel_iff' := ∀ {a b : Rat}, equivRat aequivRat bab All goals completed! 🐙

Not in textbook: equivalence preserves ring operations

abbrev declaration uses 'sorry'declaration uses 'sorry'Rat.equivRat_ring : Rat ≃+* where toEquiv := equivRat map_add' := ∀ (x y : Rat), equivRat.toFun (x + y) = equivRat.toFun x + equivRat.toFun y All goals completed! 🐙 map_mul' := ∀ (x y : Rat), equivRat.toFun (x * y) = equivRat.toFun x * equivRat.toFun y All goals completed! 🐙end Section_4_2