Analysis I, Section 5.4
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
-
Ordering on the real line
namespace Chapter5Definition 5.4.1 (sequences bounded away from zero with sign). Sequences are indexed to start from zero as this is more convenient for Mathlib purposes.
abbrev bounded_away_pos (a:ℕ → ℚ) : Prop :=
∃ (c:ℚ), c > 0 ∧ ∀ n, a n ≥ cDefinition 5.4.1 (sequences bounded away from zero with sign).
abbrev bounded_away_neg (a:ℕ → ℚ) : Prop :=
∃ (c:ℚ), c > 0 ∧ ∀ n, a n ≤ -cDefinition 5.4.1 (sequences bounded away from zero with sign).
theorem bounded_away_pos_def (a:ℕ → ℚ) : bounded_away_pos a ↔ ∃ (c:ℚ), c > 0 ∧ ∀ n, a n ≥ c := a:ℕ → ℚ⊢ bounded_away_pos a ↔ ∃ c > 0, ∀ (n : ℕ), a n ≥ c All goals completed! 🐙Definition 5.4.1 (sequences bounded away from zero with sign).
theorem bounded_away_neg_def (a:ℕ → ℚ) : bounded_away_neg a ↔ ∃ (c:ℚ), c > 0 ∧ ∀ n, a n ≤ -c := a:ℕ → ℚ⊢ bounded_away_neg a ↔ ∃ c > 0, ∀ (n : ℕ), a n ≤ -c All goals completed! 🐙Examples 5.4.2
example : bounded_away_pos (fun n ↦ 1 + 10^(-(n:ℤ)-1)) := ⊢ bounded_away_pos fun n => 1 + 10 ^ (-↑n - 1) All goals completed! 🐙Examples 5.4.2
example : bounded_away_neg (fun n ↦ - - 10^(-(n:ℤ)-1)) := ⊢ bounded_away_neg fun n => - -10 ^ (-↑n - 1) All goals completed! 🐙Examples 5.4.2
example : ¬ bounded_away_pos (fun n ↦ (-1)^n) := ⊢ ¬bounded_away_pos fun n => (-1) ^ n All goals completed! 🐙example : ¬ bounded_away_neg (fun n ↦ (-1)^n) := ⊢ ¬bounded_away_neg fun n => (-1) ^ n All goals completed! 🐙example : bounded_away_zero (fun n ↦ (-1)^n) := ⊢ bounded_away_zero fun n => (-1) ^ n All goals completed! 🐙theorem bounded_away_zero_of_pos {a:ℕ → ℚ} (ha: bounded_away_pos a) : bounded_away_zero a := a:ℕ → ℚha:bounded_away_pos a⊢ bounded_away_zero a All goals completed! 🐙theorem bounded_away_zero_of_neg {a:ℕ → ℚ} (ha: bounded_away_neg a) : bounded_away_zero a := a:ℕ → ℚha:bounded_away_neg a⊢ bounded_away_zero a All goals completed! 🐙theorem not_bounded_away_pos_neg {a:ℕ → ℚ} : ¬ (bounded_away_pos a ∧ bounded_away_neg a) := a:ℕ → ℚ⊢ ¬(bounded_away_pos a ∧ bounded_away_neg a) All goals completed! 🐙abbrev Real.isPos (x:Real) : Prop := ∃ a:ℕ → ℚ, bounded_away_pos a ∧ (a:Sequence).isCauchy ∧ x = LIM aabbrev Real.isNeg (x:Real) : Prop := ∃ a:ℕ → ℚ, bounded_away_neg a ∧ (a:Sequence).isCauchy ∧ x = LIM aProposition 5.4.4 (basic properties of positive reals) / Exercise 5.4.1
theorem Real.trichotomous (x:Real) : x = 0 ∨ x.isPos ∨ x.isNeg := x:Real⊢ x = 0 ∨ x.isPos ∨ x.isNeg All goals completed! 🐙Proposition 5.4.4 (basic properties of positive reals) / Exercise 5.4.1
theorem Real.not_zero_pos (x:Real) : ¬ (x = 0 ∧ x.isPos) := x:Real⊢ ¬(x = 0 ∧ x.isPos) All goals completed! 🐙theorem Real.nonzero_of_pos {x:Real} (hx: x.isPos) : x ≠ 0 := x:Realhx:x.isPos⊢ x ≠ 0
x:Realhx:x.isPosthis:¬(x = 0 ∧ x.isPos)⊢ x ≠ 0
x:Realhx:x.isPosthis:¬x = 0⊢ ¬x = 0
All goals completed! 🐙Proposition 5.4.4 (basic properties of positive reals) / Exercise 5.4.1
theorem Real.not_zero_neg (x:Real) : ¬ (x = 0 ∧ x.isNeg) := x:Real⊢ ¬(x = 0 ∧ x.isNeg) All goals completed! 🐙theorem Real.nonzero_of_neg {x:Real} (hx: x.isNeg) : x ≠ 0 := x:Realhx:x.isNeg⊢ x ≠ 0
x:Realhx:x.isNegthis:¬(x = 0 ∧ x.isNeg)⊢ x ≠ 0
x:Realhx:x.isNegthis:¬x = 0⊢ ¬x = 0
All goals completed! 🐙Proposition 5.4.4 (basic properties of positive reals) / Exercise 5.4.1
theorem Real.not_pos_neg (x:Real) : ¬ (x.isPos ∧ x.isNeg) := x:Real⊢ ¬(x.isPos ∧ x.isNeg) All goals completed! 🐙Proposition 5.4.4 (basic properties of positive reals) / Exercise 5.4.1
@[simp]
theorem Real.neg_iff_pos_of_neg (x:Real) : x.isNeg ↔ (-x).isPos := x:Real⊢ x.isNeg ↔ (-x).isPos All goals completed! 🐙Proposition 5.4.4 (basic properties of positive reals) / Exercise 5.4.1
theorem Real.pos_add {x y:Real} (hx: x.isPos) (hy: y.isPos) : (x+y).isPos := x:Realy:Realhx:x.isPoshy:y.isPos⊢ (x + y).isPos All goals completed! 🐙Proposition 5.4.4 (basic properties of positive reals) / Exercise 5.4.1
theorem Real.pos_mul {x y:Real} (hx: x.isPos) (hy: y.isPos) : (x*y).isPos := x:Realy:Realhx:x.isPoshy:y.isPos⊢ (x * y).isPos All goals completed! 🐙theorem Real.pos_of_coe (q:ℚ) : (q:Real).isPos ↔ q > 0 := q:ℚ⊢ (↑q).isPos ↔ q > 0 All goals completed! 🐙theorem Real.neg_of_coe (q:ℚ) : (q:Real).isNeg ↔ q < 0 := q:ℚ⊢ (↑q).isNeg ↔ q < 0 All goals completed! 🐙open Classical in
/-- Need to use classical logic here because isPos and isNeg are not decidable -/
noncomputable abbrev Real.abs (x:Real) : Real := if x.isPos then x else (if x.isNeg then -x else 0)Definition 5.4.5 (absolute value)
@[simp]
theorem Real.abs_of_pos (x:Real) (hx: x.isPos) : Real.abs x = x := x:Realhx:x.isPos⊢ x.abs = x
All goals completed! 🐙Definition 5.4.5 (absolute value)
@[simp]
theorem Real.abs_of_neg (x:Real) (hx: x.isNeg) : Real.abs x = -x := x:Realhx:x.isNeg⊢ x.abs = -x
have : ¬ x.isPos := x:Realhx:x.isNeg⊢ x.abs = -x x:Realhx:x.isNegthis:¬(x.isPos ∧ x.isNeg)⊢ ¬x.isPos; x:Realhx:x.isNegthis:¬x.isPos⊢ ¬x.isPos; All goals completed! 🐙
All goals completed! 🐙Definition 5.4.5 (absolute value)
@[simp]
theorem Real.abs_of_zero : Real.abs 0 = 0 := ⊢ abs 0 = 0
have hpos: ¬ (0:Real).isPos := ⊢ abs 0 = 0 this:¬(0 = 0 ∧ isPos 0)⊢ ¬isPos 0; this:¬isPos 0⊢ ¬isPos 0; All goals completed! 🐙
have hneg: ¬ (0:Real).isNeg := ⊢ abs 0 = 0 hpos:¬isPos 0this:¬(0 = 0 ∧ isNeg 0)⊢ ¬isNeg 0; hpos:¬isPos 0this:¬isNeg 0⊢ ¬isNeg 0; All goals completed! 🐙
All goals completed! 🐙Definition 5.4.6 (Ordering of the reals)
instance Real.instLT : LT Real where
lt x y := (x-y).isNegDefinition 5.4.6 (Ordering of the reals)
instance Real.instLE : LE Real where
le x y := (x < y) ∨ (x = y)theorem Real.lt_iff (x y:Real) : x < y ↔ (x-y).isNeg := x:Realy:Real⊢ x < y ↔ (x - y).isNeg All goals completed! 🐙theorem Real.le_iff (x y:Real) : x ≤ y ↔ (x < y) ∨ (x = y) := x:Realy:Real⊢ x ≤ y ↔ x < y ∨ x = y All goals completed! 🐙theorem Real.gt_iff (x y:Real) : x > y ↔ (x-y).isPos := x:Realy:Real⊢ x > y ↔ (x - y).isPos All goals completed! 🐙theorem Real.ge_iff (x y:Real) : x ≥ y ↔ (x > y) ∨ (x = y) := x:Realy:Real⊢ x ≥ y ↔ x > y ∨ x = y All goals completed! 🐙theorem Real.lt_of_coe (q q':ℚ): q < q' ↔ (q:Real) < (q':Real) := q:ℚq':ℚ⊢ q < q' ↔ ↑q < ↑q' All goals completed! 🐙theorem Real.gt_of_coe (q q':ℚ): q > q' ↔ (q:Real) > (q':Real) := Real.lt_of_coe _ _Proposition 5.4.7(a) (order trichotomy) / Exercise 5.4.2
theorem Real.trichotomous' (x y z:Real) : x > y ∨ x < y ∨ x = y := x:Realy:Realz:Real⊢ x > y ∨ x < y ∨ x = y All goals completed! 🐙Proposition 5.4.7(a) (order trichotomy) / Exercise 5.4.2
theorem Real.not_gt_and_lt (x y:Real) : ¬ (x > y ∧ x < y):= x:Realy:Real⊢ ¬(x > y ∧ x < y) All goals completed! 🐙Proposition 5.4.7(a) (order trichotomy) / Exercise 5.4.2
theorem Real.not_gt_and_eq (x y:Real) : ¬ (x > y ∧ x = y):= x:Realy:Real⊢ ¬(x > y ∧ x = y) All goals completed! 🐙Proposition 5.4.7(a) (order trichotomy) / Exercise 5.4.2
theorem Real.not_lt_and_eq (x y:Real) : ¬ (x < y ∧ x = y):= x:Realy:Real⊢ ¬(x < y ∧ x = y) All goals completed! 🐙Proposition 5.4.7(b) (order is anti-symmetric) / Exercise 5.4.2
theorem Real.antisymm (x y:Real) : x < y ↔ (y - x).isPos := x:Realy:Real⊢ x < y ↔ (y - x).isPos All goals completed! 🐙Proposition 5.4.7(c) (order is transitive) / Exercise 5.4.2
theorem Real.lt_trans {x y z:Real} (hxy: x < y) (hyz: y < z) : x < z := x:Realy:Realz:Realhxy:x < yhyz:y < z⊢ x < z All goals completed! 🐙Proposition 5.4.7(d) (addition preserves order) / Exercise 5.4.2
theorem Real.add_lt_add_right {x y:Real} (z:Real) (hxy: x < y) : x + z < y + z := x:Realy:Realz:Realhxy:x < y⊢ x + z < y + z All goals completed! 🐙Proposition 5.4.7(e) (positive multiplication preserves order) / Exercise 5.4.2
theorem Real.mul_lt_mul_right {x y z:Real} (hxy: x < y) (hz: z.isPos) : x * z < y * z := x:Realy:Realz:Realhxy:x < yhz:z.isPos⊢ x * z < y * z
x:Realy:Realz:Realhxy:(y - x).isPoshz:z.isPos⊢ (y * z - x * z).isPos
x:Realy:Realz:Realhxy:(y - x).isPoshz:z.isPos⊢ y * z - x * z = (y - x) * z
All goals completed! 🐙Proposition 5.4.7(e) (positive multiplication preserves order) / Exercise 5.4.2
theorem Real.mul_le_mul_left {x y z:Real} (hxy: x ≤ y) (hz: z.isPos) : z * x ≤ z * y := x:Realy:Realz:Realhxy:x ≤ yhz:z.isPos⊢ z * x ≤ z * y All goals completed! 🐙theorem Real.mul_pos_neg {x y:Real} (hx: x.isPos) (hy: y.isNeg) : (x * y).isNeg := x:Realy:Realhx:x.isPoshy:y.isNeg⊢ (x * y).isNeg
All goals completed! 🐙(Not from textbook) Real has the structure of a linear ordering. The order is not computable, and so classical logic is required to impose decidability.
noncomputable instance Real.instLinearOrder : LinearOrder Real where
le_refl := sorry
le_trans := sorry
lt_iff_le_not_le := sorry
le_antisymm := sorry
le_total := sorry
toDecidableLE := ⊢ DecidableLE Real
classical
All goals completed! 🐙Proposition 5.4.8
theorem Real.inv_of_pos {x:Real} (hx: x.isPos) : x⁻¹.isPos := x:Realhx:x.isPos⊢ x⁻¹.isPos
x:Realhx:x.isPoshnon:x ≠ 0⊢ x⁻¹.isPos
x:Realhx:x.isPoshnon:x ≠ 0hident:x * x⁻¹ = 1⊢ x⁻¹.isPos
have hinv_non: x⁻¹ ≠ 0 := x:Realhx:x.isPos⊢ x⁻¹.isPos x:Realhx:x.isPoshnon:x ≠ 0hident:x⁻¹ = 0⊢ x * x⁻¹ ≠ 1; All goals completed! 🐙
have hnonneg : ¬ x⁻¹.isNeg := x:Realhx:x.isPos⊢ x⁻¹.isPos
x:Realhx:x.isPoshnon:x ≠ 0hident:x * x⁻¹ = 1hinv_non:x⁻¹ ≠ 0h:x⁻¹.isNeg⊢ False
x:Realhx:x.isPoshnon:x ≠ 0hident:x * x⁻¹ = 1hinv_non:x⁻¹ ≠ 0h:x⁻¹.isNegthis:(x * x⁻¹).isNeg⊢ False
have id : -(1:Real) = (-1:ℚ) := x:Realhx:x.isPos⊢ x⁻¹.isPos All goals completed! 🐙
x:Realhx:x.isPoshnon:x ≠ 0hident:x * x⁻¹ = 1hinv_non:x⁻¹ ≠ 0h:x⁻¹.isNegid:-1 = ↑(-1)this:-1 > 0⊢ False
All goals completed! 🐙
x:Realhx:x.isPoshnon:x ≠ 0hident:x * x⁻¹ = 1hinv_non:x⁻¹ ≠ 0hnonneg:¬x⁻¹.isNegtrich:x⁻¹ = 0 ∨ x⁻¹.isPos ∨ x⁻¹.isNeg⊢ x⁻¹.isPos
x:Realhx:x.isPoshnon:x ≠ 0hident:x * x⁻¹ = 1hinv_non:x⁻¹ ≠ 0hnonneg:¬x⁻¹.isNegtrich:x⁻¹.isPos⊢ x⁻¹.isPos
All goals completed! 🐙theorem Real.inv_of_gt {x y:Real} (hx: x.isPos) (hy: y.isPos) (hxy: x > y) : x⁻¹ < y⁻¹ := x:Realy:Realhx:x.isPoshy:y.isPoshxy:x > y⊢ x⁻¹ < y⁻¹
x:Realy:Realhx:x.isPoshy:y.isPoshxy:x > yhxnon:x ≠ 0⊢ x⁻¹ < y⁻¹
x:Realy:Realhx:x.isPoshy:y.isPoshxy:x > yhxnon:x ≠ 0hynon:y ≠ 0⊢ x⁻¹ < y⁻¹
x:Realy:Realhx:x.isPoshy:y.isPoshxy:x > yhxnon:x ≠ 0hynon:y ≠ 0hxinv:x⁻¹.isPos⊢ x⁻¹ < y⁻¹
x:Realy:Realhx:x.isPoshy:y.isPoshxy:x > yhxnon:x ≠ 0hynon:y ≠ 0hxinv:x⁻¹.isPoshyinv:y⁻¹.isPos⊢ x⁻¹ < y⁻¹
x:Realy:Realhx:x.isPoshy:y.isPoshxy:x > yhxnon:x ≠ 0hynon:y ≠ 0hxinv:x⁻¹.isPoshyinv:y⁻¹.isPosthis:y⁻¹ ≤ x⁻¹⊢ False
x:Realy:Realhx:x.isPoshy:y.isPoshxy:x > yhxnon:x ≠ 0hynon:y ≠ 0hxinv:x⁻¹.isPoshyinv:y⁻¹.isPosthis✝:y⁻¹ ≤ x⁻¹this:1 > 1⊢ False
All goals completed! 🐙(Not from textbook) Real has the structure of a strict ordered ring.
instance Real.instIsStrictOrderedRing : IsStrictOrderedRing Real where
add_le_add_left := ⊢ ∀ (a b : Real), a ≤ b → ∀ (c : Real), c + a ≤ c + b All goals completed! 🐙
add_le_add_right := ⊢ ∀ (a b : Real), a ≤ b → ∀ (c : Real), a + c ≤ b + c All goals completed! 🐙
mul_lt_mul_of_pos_left := ⊢ ∀ (a b c : Real), a < b → 0 < c → c * a < c * b All goals completed! 🐙
mul_lt_mul_of_pos_right := ⊢ ∀ (a b c : Real), a < b → 0 < c → a * c < b * c All goals completed! 🐙
le_of_add_le_add_left := ⊢ ∀ (a b c : Real), a + b ≤ a + c → b ≤ c All goals completed! 🐙
zero_le_one := ⊢ 0 ≤ 1 All goals completed! 🐙Proposition 5.4.9 (The non-negative reals are closed)
theorem Real.LIM_of_nonneg {a: ℕ → ℚ} (ha: ∀ n, a n ≥ 0) (hcauchy: (a:Sequence).isCauchy) : LIM a ≥ 0 := a:ℕ → ℚha:∀ (n : ℕ), a n ≥ 0hcauchy:{ n₀ := 0, seq := fun n => if n ≥ 0 then a n.toNat else 0, vanish := ⋯ }.isCauchy⊢ LIM a ≥ 0
All goals completed! 🐙 --TODOCorollary 5.4.10
theorem Real.LIM_mono {a b:ℕ → ℚ} (ha: (a:Sequence).isCauchy) (hb: (b:Sequence).isCauchy) (hmono: ∀ n, a n ≤ b n) : LIM a ≤ LIM b := a:ℕ → ℚb:ℕ → ℚha:{ n₀ := 0, seq := fun n => if n ≥ 0 then a n.toNat else 0, vanish := ⋯ }.isCauchyhb:{ n₀ := 0, seq := fun n => if n ≥ 0 then b n.toNat else 0, vanish := ⋯ }.isCauchyhmono:∀ (n : ℕ), a n ≤ b n⊢ LIM a ≤ LIM b
All goals completed! 🐙 --TODORemark 5.4.11 -
theorem Real.LIM_mono_fail : ∃ (a b:ℕ → ℚ), (a:Sequence).isCauchy ∧ (b:Sequence).isCauchy ∧ ¬ (∀ n, a n > b n) ∧ ¬ LIM a > LIM b := ⊢ ∃ a b,
{ n₀ := 0, seq := fun n => if n ≥ 0 then a n.toNat else 0, vanish := ⋯ }.isCauchy ∧
{ n₀ := 0, seq := fun n => if n ≥ 0 then b n.toNat else 0, vanish := ⋯ }.isCauchy ∧
(¬∀ (n : ℕ), a n > b n) ∧ ¬LIM a > LIM b
⊢ ∃ b,
{ n₀ := 0, seq := fun n => if n ≥ 0 then (fun n => 1 + 1 / ↑n) n.toNat else 0, vanish := ⋯ }.isCauchy ∧
{ n₀ := 0, seq := fun n => if n ≥ 0 then b n.toNat else 0, vanish := ⋯ }.isCauchy ∧
(¬∀ (n : ℕ), (fun n => 1 + 1 / ↑n) n > b n) ∧ ¬(LIM fun n => 1 + 1 / ↑n) > LIM b
⊢ { n₀ := 0, seq := fun n => if n ≥ 0 then 1 + 1 / ↑n.toNat else 0, vanish := ⋯ }.isCauchy ∧
{ n₀ := 0, seq := fun n => if n ≥ 0 then (fun n => 1 - 1 / ↑n) n.toNat else 0, vanish := ⋯ }.isCauchy ∧
(¬∀ (n : ℕ), 1 + 1 / ↑n > (fun n => 1 - 1 / ↑n) n) ∧ ¬(LIM fun n => 1 + 1 / ↑n) > LIM fun n => 1 - 1 / ↑n
All goals completed! 🐙end Chapter5